Low discrepancy sequences for solving the Boltzmann equation
DOI10.1016/0377-0427(89)90049-6zbMath0668.65117OpenAlexW2064197896MaRDI QIDQ1118378
Publication date: 1989
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0377-0427(89)90049-6
convergenceBoltzmann equationError boundsdirect simulation Monte Carlo schemehomogeneous and isotropic gaslow discrepancy methodnumber-theoretic conceptsspaces vehicle aerodynamics
Monte Carlo methods (65C05) Numerical methods for integral equations (65R20) Integro-partial differential equations (45K05) Rarefied gas flows, Boltzmann equation in fluid mechanics (76P05)
Related Items (5)
Cites Work
- Point sets and sequences with small discrepancy
- A direct simulation Monte Carlo scheme and uniformly distributed sequences for solving the Boltzmann equation
- An algorithm for generating low discrepancy sequences on vector computers
- Discrépance de suites associées à un système de numération (en dimension s)
- Exact solutions of the Boltzmann equation
- Quasi-Monte Carlo methods and pseudo-random numbers
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Low discrepancy sequences for solving the Boltzmann equation