Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

A characteristic of points in \({\mathbb{R}}^ 2\) having Lebesgue function of polynomial growth

From MaRDI portal
Publication:1122069
Jump to:navigation, search

DOI10.1016/0021-9045(89)90121-4zbMath0675.41013OpenAlexW2080687934MaRDI QIDQ1122069

L. P. Bos

Publication date: 1989

Published in: Journal of Approximation Theory (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/0021-9045(89)90121-4


zbMATH Keywords

Lebesgue function


Mathematics Subject Classification ID

Interpolation in approximation theory (41A05) Approximation by polynomials (41A10)


Related Items (2)

Polynomial interpolation of holomorphic functions in \(\mathbb{C}\) and \(\mathbb{C}^ n\) ⋮ On the convergence of multivariable Lagrange interpolants



Cites Work

  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • A characterization of the Lagrange interpolating projection with minimal Tchebycheff norm
  • Proof of the conjectures of Bernstein and Erdős concerning the optimal nodes for polynomial interpolation
  • TRANSFINITE DIAMETER, ČEBYŠEV CONSTANTS, AND CAPACITY FOR COMPACTA IN $ \mathbf{C}^n$


This page was built for publication: A characteristic of points in \({\mathbb{R}}^ 2\) having Lebesgue function of polynomial growth

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1122069&oldid=13166483"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 31 January 2024, at 03:52.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki