Sur la classification de H. Bercovici, C. Foias et C. Pearcy concernant les algèbres duales. (On the classification of H. Bercovici, C. Foias and C. Pearcy concerning dual algebras)
DOI10.1016/0022-1236(88)90007-9zbMath0675.47045OpenAlexW2064562985MaRDI QIDQ1122125
Publication date: 1988
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-1236(88)90007-9
existence of single generated dual algebras which satisfy the property \((A_{1/p})\), but which do no have property \((A_{1/p-1})\)infinite-dimensional convex cone in the predualrank one representation
Linear operators belonging to operator ideals (nuclear, (p)-summing, in the Schatten-von Neumann classes, etc.) (47B10) General theory of (C^*)-algebras (46L05) Dual spaces of operator algebras (47L50)
Related Items (1)
Cites Work
- Some invariant subspaces for subnormal operators
- On \(C_{00}\)-contractions with dominating spectrum
- Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra. I
- Pettis' lemma and topological properties of dual algebras
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Sur la classification de H. Bercovici, C. Foias et C. Pearcy concernant les algèbres duales. (On the classification of H. Bercovici, C. Foias and C. Pearcy concerning dual algebras)