Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Der Beweis des Weierstraßschen Approximationssatzes 1885 vor dem Hintergrund der Entwicklung der Fourieranalysis. (The proof of Weierstraß's approximation theorem (1885) with regard to the development of Fourier analysis)

From MaRDI portal
Publication:1122562
Jump to:navigation, search

DOI10.1016/0315-0860(88)90023-7zbMath0676.01001OpenAlexW1973370155MaRDI QIDQ1122562

Reinhard Siegmund-Schultze

Publication date: 1988

Published in: Historia Mathematica (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/0315-0860(88)90023-7


zbMATH Keywords

Fourier analysiscontinuous functionsperiodic functionsPaul du Bois- Reymond


Mathematics Subject Classification ID

History of mathematics in the 19th century (01A55) History of real functions (26-03) History of harmonic analysis on Euclidean spaces (42-03)


Related Items

``The last aim is always the representation of a function: foundation of analysis in Weierstrass in 1886, historical roots and parallels



Cites Work

  • Von Riemann zu Lebesgue - zur Entwicklung der Integrationstheorie
  • Über die Wechselwirkungen zwischen der franzoesischen Schule, Riemann und Weierstrass. Eine Übersicht mit zwei Quellenstudien
  • Éléments d'analyse de Karl Weierstrass
  • Applications of the Theory of Boolean Rings to General Topology
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1122562&oldid=13170035"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 31 January 2024, at 04:00.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki