Improved estimation of the disturbance variance in a linear regression model

From MaRDI portal
Publication:1123515

DOI10.1016/0304-4076(88)90065-6zbMath0677.62060OpenAlexW2034625180MaRDI QIDQ1123515

Alan E. Gelfand, Dey, Dipak K.

Publication date: 1988

Published in: Journal of Econometrics (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/0304-4076(88)90065-6




Related Items

Estimation of the variance and its applicationsAsymmetric risk of the Stein variance estimator under a misspecified linear regression modelRisk behavior of a pre-test estimator for normal variance with the Stein- type estimatorPreliminary-test estimation of the regression scale parameter when the loss function is asymmetricThe exact distribution and density functions of the stein-type estimator for normal varianceSome modifications of improved estimators of a normal varianceON THE USE OF THE STEIN VARIANCE ESTIMATOR IN THE DOUBLE k-CLASS ESTIMATOR IN REGRESSIONEstimation of error variance in ANOVA model and order restricted scale parametersFurther improving the Stein-rule estimator using the Stein variance estimator in a misspecified linear regression modelThe exact distribution and density functions of a pre-test estimator of the error variance in a linear regression model with proxy variablesPreliminary-test estimation of the scale parameter in a mis-specified regression modelThe neyman accuracy and the wolfowitz accuracy of the stein type confidence interval for the disturbance varianceThe optimal size of a preliminary test for linear restrictions when estimating the regression scale parameterPre-testing for linear restrictions in a regression model with spherically symmetric disturbancesComparisons of estimators for regression coefficient in a misspecified linear model with elliptically contoured errorsOn a class of improved estimators of variance and estimation under order restrictionEstimation of the variance in a normal population after the one-sided pre-test for the meanA minimum discrimination information estimator of preliminary conjectured normal varianceEstimation of Error Variance in the Analysis of Experiments Using Two-Level Orthogonal ArraysComparison of the Stein and the usual estimators for the regression error variance under the Pitman nearness criterion when variables are omittedInadmissibility of the Stein-rule estimator under the balanced loss functionExact distribution of a pre-test estimator for regression error variance when there are omitted variables.Optimal critical values of pre-tests when estimating the regression error variance: Analytical findings under a general loss structure



Cites Work