The size of \(L^ p\)-improving measures
DOI10.1016/0022-1236(89)90106-7zbMath0678.43001OpenAlexW2040704748MaRDI QIDQ1124080
Kathryn E. Hare, David L. Ritter, Colin C. Graham
Publication date: 1989
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-1236(89)90106-7
convolutiondistribution functionlocally compact abelian groupabsolute continuitydual groupLipschitz classFourier- Stieltjes transform\(L^ p\)-improving measures
Measures on groups and semigroups, etc. (43A05) Special sets (thin sets, Kronecker sets, Helson sets, Ditkin sets, Sidon sets, etc.) (43A46) Fourier and Fourier-Stieltjes transforms on locally compact and other abelian groups (43A25)
Related Items (9)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A convolution inequality concerning Cantor-Lebesgue measures
- Spectra of singular measures as multipliers on \(L^p\)
- Functions of \(L^ p\)-multipliers
- Noncommutative convolution measure algebras
- Étude des coefficients de Fourier des fonctions de \(L^ p(G)\)
- On the spectra of multipliers
- Most Riesz Product Measures are L p -Improving
- Some singular measures on the circle which improve $L^p$ spaces
- A Characterization of L p -Improving Measures
- Subspaces of $L^{1}$ containing $L^{1}$
- A convolution property of the Cantor-Lebesgue measure
This page was built for publication: The size of \(L^ p\)-improving measures