The Riesz transformation on conical varieties
From MaRDI portal
Publication:1125286
DOI10.1006/jfan.1999.3464zbMath0937.43004OpenAlexW2074530224MaRDI QIDQ1125286
Publication date: 14 February 2000
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jfan.1999.3464
Related Items
Heat semigroup and singular PDEs. With an appendix by F. Bernicot and D. Frey ⋮ Weak type \((1,1)\) of some operators for the Laplacian with drift ⋮ Some weighted norm inequalities on manifolds ⋮ Restriction estimates in a conical singular space: wave equation ⋮ Gaussian heat kernel bounds through elliptic Moser iteration ⋮ Unnamed Item ⋮ Riesz transforms for symmetric diffusion operators on complete Riemannian manifolds ⋮ Restriction estimates in a conical singular space: Schrödinger equation ⋮ Heat kernel estimate in a conical singular space ⋮ Gundy-Varopoulos martingale transforms and their projection operators on manifolds and vector bundles ⋮ Riesz transformations on a class of manifolds with conical singularities ⋮ \(L^p\)-analysis of the Hodge-Dirac operator associated with Witten Laplacians on complete Riemannian manifolds ⋮ Riesz transform via heat kernel and harmonic functions on non-compact manifolds ⋮ New Riemannian manifolds with \(L^p\)-unbounded Riesz transform for \(p > 2\) ⋮ Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. I. ⋮ Riesz transforms associated with higher-order Schrödinger type operators ⋮ Weighted norm inequalities, off-diagonal estimates and elliptic operators. IV: Riesz transforms on manifolds and weights ⋮ Riesz transform on manifolds and heat kernel regularity ⋮ On gradient estimates for heat kernels ⋮ Riesz transforms on connected sums ⋮ Riesz transform and \(L^p\)-cohomology for manifolds with Euclidean ends ⋮ Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg ⋮ Riesz transform under perturbations via heat kernel regularity ⋮ Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II. ⋮ Strichartz estimates and wave equation in a conic singular space ⋮ Spectrum of the Laplacian and Riesz transform on locally symmetric spaces ⋮ Gradient estimates for heat kernels and harmonic functions ⋮ The Riesz transform for homogeneous Schrödinger operators on metric cones ⋮ Estimates for operators related to the sub-Laplacian with drift in Heisenberg groups ⋮ A dichotomy concerning uniform boundedness of Riesz transforms on Riemannian manifolds ⋮ Resolvent at low energy III: The spectral measure ⋮ Estimations of the heat kernel on conic manifolds and applications ⋮ Sharp endpoint estimates for some operators associated with the Laplacian with drift in Euclidean space
Cites Work
- Gaussian upper bounds for the heat kernel on arbitrary Riemannian manifolds
- Analyse sur les groupes de Lie à croissance polynômiale. (Analysis on Lie groups of polynomial growth)
- Gradient estimate for the heat kernel of a complete Riemannian manifold and its applications
- Spectral geometry of singular Riemannian spaces
- Analysis of the Laplacian on a complete Riemannian manifold
- Comparaison des champs de vecteurs et des puissances du Laplacien sur une variété Riemannienne à courbure non positive
- On the parabolic kernel of the Schrödinger operator
- Heat kernel bounds on manifolds
- Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces
- Weak type (1,1) boundedness of Riesz transform on positively curved manifolds
- Isoperimetry, decrease of the heat kernel and Riesz transformations: A counterexample
- Die Resolvente von Delta auf symmetrischen Räumen vom nichtkompakten Typ
- Partial differential equations. 2: Qualitative studies of linear equations
- Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. (Non-commutative harmonic analysis on certain homogeneous spaces. Study of certain singular integrals.)
- On the diffraction of waves by conical singularities. I
- Heat Kernel Bounds on Hyperbolic Space and Kleinian Groups
- On the Upper Estimate of the Heat Kernel of a Complete Riemannian Manifold
- The Heat Equation on the Spaces of Positive Definite Matrices
- An Application of Homogenization Theory to Harmonic Analysis: Harnack Inequalities And Riesz Transforms on Lie Groups of Polynomial Growth
- Transformees de Riesz et Fonctions Sommables
- La transformation de Riesz sur les variétés coniques
- Riesz transforms for $1\le p\le 2$
- On an Upper Bound for the Heat Kernel on SU*(2n)/ Sp(n)
- Multiplicateurs Sur Certains Espaces Symetriques
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item