Shirshov composition techniques in Lie superalgebras (noncommutative Gröbner bases)
From MaRDI portal
Publication:1126540
DOI10.1007/BF02362521zbMath0862.17005MaRDI QIDQ1126540
Publication date: 10 December 1996
Published in: Journal of Mathematical Sciences (New York) (Search for Journal in Brave)
Universal enveloping (super)algebras (17B35) Graded Lie (super)algebras (17B70) Computational methods for problems pertaining to nonassociative rings and algebras (17-08)
Related Items (13)
Primitive and almost primitive elements of Schreier varieties ⋮ Gröbner-Shirshov bases for semirings. ⋮ Generalized anti-commutative Gröbner-Shirshov basis theory and free Sabinin algebras ⋮ Unnamed Item ⋮ Gröbner–Shirshov basis method for multiple tensor products of some associative algebras ⋮ Gröbner-Shirshov bases for Lie algebras over a commutative algebra ⋮ Gröbner-Shirshov bases for Vinberg-Koszul-Gerstenhaber right-symmetric algebras ⋮ Gröbner–Shirshov bases of the Lie algebra $D^{+}_{n}$ ⋮ Gröbner–Shirshov bases and their calculation ⋮ Gröbner-Shirshov bases for Rota-Baxter algebras. ⋮ Gröbner–Shirshov bases for brace algebras ⋮ Gröbner-Shirshov bases for associative algebras with multiple operators and free Rota-Baxter algebras. ⋮ Monomial algebras
Cites Work
- A composition lemma and the equality problem for color Lie superalgebras
- Computing a Gröbner basis of a polynomial ideal over a Euclidean domain
- The diamond lemma for ring theory
- Embeddings into simple associative algebras
- Gröbner-Shirshov bases for exceptional Lie algebras. I
- The subalgebras of free Lie \(p\)-algebras
- On theories with a combinatorial definition of 'equivalence'
- On the Homology of Associative Algebras
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Shirshov composition techniques in Lie superalgebras (noncommutative Gröbner bases)