A Taylor series method for the numerical solution of two-point boundary value problems
DOI10.1007/BF01404566zbMath0421.65051OpenAlexW2088137141MaRDI QIDQ1133304
Publication date: 1979
Published in: Numerische Mathematik (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/132585
algorithmrecurrence formulassuperconductivityTaylor series methodshooting algorithmnonlinear shell theorychemistry
Nonlinear boundary value problems for ordinary differential equations (34B15) Shells (74K25) Electromagnetic theory (general) (78A25) Numerical solution of boundary value problems involving ordinary differential equations (65L10) Dynamical problems in solid mechanics (74H99)
Related Items (14)
Cites Work
- A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting
- Implicit Runge-Kutta methods for second kind Volterra integral equations
- Numerical solution of the singular Ginzburg-Landau equations by multiple shooting
- Comparing routines for the numerical solution of initial value problems of ordinary differential equations in multiple shooting
- Numerical treatment of ordinary differential equations by extrapolation methods
- Klassische Runge-Kutta-Formeln fünfter und siebenter Ordnung mit Schrittweiten-Kontrolle
- Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme
- On the Nonlinear Theory of Shallow Spherical Shells
- A Program for the Automatic Integration of Differential Equations using the Method of Taylor Series
- Quasi-Newton Methods and their Application to Function Minimisation
- On Finite Symmetrical Deflections of Thin Shells of Revolution
- Axisymmetric buckling of hollow spheres and hemispheres
- The automatic solution of systems of ordinary differential equations by the method of Taylor series
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A Taylor series method for the numerical solution of two-point boundary value problems