The Lanczos phenomenon - An interpretation based upon conjugate gradient optimization
DOI10.1016/0024-3795(80)90231-1zbMath0424.65009OpenAlexW1992787463MaRDI QIDQ1135080
Ralph A. Willoughby, Jane K. Cullum
Publication date: 1980
Published in: Linear Algebra and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0024-3795(80)90231-1
convergenceLanczos vectorsconjugate gradient optimization procedureLanczos eigenvalue proceduresLanczos tridiagonalization proceduresymmetric, positive definite matrix
Numerical computation of eigenvalues and eigenvectors of matrices (65F15) Iterative numerical methods for linear systems (65F10) Orthogonalization in numerical linear algebra (65F25)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem
- Computing eigenvalues of very large symmetric matrices. An implementation of a Lanczos algorithm with no reorthogonalization
- Eigenvalues of perturbed Hermitian matrices
- Solution of Sparse Indefinite Systems of Linear Equations
- Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix
- Use of the Lanczos Method for Finding Complete Sets of Eigenvalues of Large Sparse Symmetric Matrices
- The Lanczos Algorithm with Selective Orthogonalization
- Computational Variants of the Lanczos Method for the Eigenproblem
- Methods of conjugate gradients for solving linear systems
This page was built for publication: The Lanczos phenomenon - An interpretation based upon conjugate gradient optimization