On the Diophantine equation \(1^k+2^k+\dots +x^k+R(x)=y^2\)
From MaRDI portal
Publication:1135874
DOI10.1007/BF02392086zbMath0426.10019OpenAlexW2048907250MaRDI QIDQ1135874
Marc Voorhoeve, Kálmán Győry, Robert Tijdeman
Publication date: 1979
Published in: Acta Mathematica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02392086
Related Items
Polynomials determined by a few of their coefficients. ⋮ A note on the equation \(1^ k+2^ k+\cdots+(x-1)^ k=y^ m\) ⋮ Polynomial values of (alternating) power sums ⋮ Unnamed Item ⋮ The equation $(x-d)^5+x^5+(x+d)^5=y^n$ ⋮ Generalized balancing numbers ⋮ Polynomial values of surface point counting polynomials ⋮ On \(S\)-integral solutions of the equation \(y^ m=f(x)\)
Cites Work