Le problème de Goursat non linéaire
From MaRDI portal
Publication:1136938
zbMath0427.35021MaRDI QIDQ1136938
Publication date: 1979
Published in: Journal de Mathématiques Pures et Appliquées. Neuvième Série (Search for Journal in Brave)
Fixed-point theorems (47H10) Nonlinear first-order PDEs (35F20) Nonlinear higher-order PDEs (35G20) Other special methods applied to PDEs (35A25)
Related Items (22)
Le problème de Cauchy ramifié semi-linéaire d'ordre deux ⋮ A complete normal form for everywhere Levi-degenerate hypersurfaces in \(\mathbb{C}^3\) ⋮ Convergence of formal solutions for Fuchs-Goursat equations ⋮ Non abelian ramification ⋮ On the lifespan of solutions to nonlinear Cauchy problems with small analytic data ⋮ Global solutions of a linear Cauchy problem. ⋮ Construction de solutions singulières pour des équations aux dérivées partielles non linéaires ⋮ Smooth Gevrey normal forms of vector fields near a fixed point ⋮ On the solvability of nonlinear Goursat problems ⋮ On hyperbolicity and Gevrey well-posedness. I: The elliptic case ⋮ Space propagation of instabilities in Zakharov equations ⋮ Nonlinear Fuchs operators ⋮ Construction of ramified solutions around two simple characteristic hypersurfaces for quasilinear operators ⋮ Singular solutions and prolongation of holomorphic solutions to nonlinear differential equations ⋮ Nonlinear Cauchy problem with weakly oscillating initial data ⋮ Global analytic solutions of linear problems with shrinking argument. (Solutions analytiques globales de problémes linéaires avec argument absorbant) ⋮ A fixed point theorem and a theorem of Cauchy-Kowalewsky-Lednev for semilinear systems ⋮ Nonlinear Cauchy problems with small analytic data ⋮ An application of generalized implicit function theorem to Goursat problems for nonlinear Leray-Volevich systems ⋮ Solutions globales de certaines équations de Fuchs non linéaires dans les espaces de Gevrey ⋮ On a global Cauchy-Kowalewski-Nagumo theorem ⋮ Nonlinear Fuchsian operators.
This page was built for publication: Le problème de Goursat non linéaire