Global solvability of the Laplacians on pseudo-Riemannian symmetric spaces
DOI10.1016/0022-1236(79)90089-2zbMath0431.58015OpenAlexW1986115023WikidataQ125364294 ScholiaQ125364294MaRDI QIDQ1138282
Publication date: 1979
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-1236(79)90089-2
geodesicsinvariant differential operatorsbicharacteristicsfixed point group involutionnon-compact semi-simple Lie group with finite centersimple characteristicsmooth global solvability of the Laplacian on a pseudo-Riemannian symmetric space
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Spherical functions on a real semisimple Lie group. A method of reduction to the complex case
- Global solvability of the Casimir operator
- The surjectivity of invariant differential operators on symmetric spaces. I
- Fourier integral operators. II
- Les espaces symétriques noncompacts
- On Affine Symmetric Spaces
- Invariant Affine Connections on Homogeneous Spaces
This page was built for publication: Global solvability of the Laplacians on pseudo-Riemannian symmetric spaces