Every nuclear Frechet space is a quotient of a Köthe Schwartz space
From MaRDI portal
Publication:1141313
DOI10.1007/BF01235382zbMath0437.46004MaRDI QIDQ1141313
Publication date: 1980
Published in: Archiv der Mathematik (Search for Journal in Brave)
Sequence spaces (including Köthe sequence spaces) (46A45) Spaces defined by inductive or projective limits (LB, LF, etc.) (46A13) Locally convex Fréchet spaces and (DF)-spaces (46A04) Spaces determined by compactness or summability properties (nuclear spaces, Schwartz spaces, Montel spaces, etc.) (46A11) Inductive and projective limits in functional analysis (46M40)
Related Items (3)
Unnamed Item ⋮ Jeder nukleare (F)-Raum ist Quotient eines nuklearen Köthe-Raumes ⋮ Two results on Fréchet Schwartz spaces
Cites Work
- Charakterisierung der Unterräume von \((s)\)
- The structure of nuclear Frechet spaces
- Die diametrale Dimension von lokalkonvexen Räumen
- Some problems on bases in Banach and Frechet spaces
- Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau
- Quotient spaces of (s) with basis
- On extending and lifting continuous linear mappings in topological vector spaces
- Charakterisierung der Unterraüme und Quotienteräume der nuklearen stabilen Potenzreihenraüme von unendlichem Typ
- Some remarks on Dragilev's theorem
- On the isomorphism of cartesian products of locally convex spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Every nuclear Frechet space is a quotient of a Köthe Schwartz space