Some mathematical problems related to the nonequilibrium statistical mechanics of infinitely many particles
From MaRDI portal
Publication:1141430
DOI10.1007/BF01673627zbMath0437.60080MaRDI QIDQ1141430
B. M. Gurevich, Valery I. Oseledets
Publication date: 1980
Published in: Journal of Soviet Mathematics (Search for Journal in Brave)
Interacting random processes; statistical mechanics type models; percolation theory (60K35) Classical equilibrium statistical mechanics (general) (82B05) Stochastic mechanics (including stochastic electrodynamics) (81P20)
Cites Work
- Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas
- Markovian master equations
- Convergence to total occupancy in an infinite particle system with interactions
- Differentiability of spatially homogeneous solutions of the Boltzmann equation in the non Maxwellian case
- Mean square relaxation times for evolution of random fields
- Diagram method of constructing solutions of Bogolyubov's chain of equations
- Information flow in graphs
- Interaction of Markov processes
- The central limit theorem for Carleman's equation
- Existence theorem for solutions of the Bogolyubov equations
- Asymptotic analysis of deterministic and stochastic equations with rapidly varying components
- Markov processes with quasilinear parabolic forward differential equation
- Contact interactions on a lattice
- Convergence of a local lattice process
- Ergodic properties of an infinite one dimensional hard rod system
- Random time evolution of infinite particle systems
- Space-time ergodic properties of systems of infinitely many independent particles
- Ergodic properties of the equilibrium process associated with infinitely many Markovian particles
- Ergodic theorems for weakly interacting infinite systems and the voter model
- Ergodic properties of several interacting Poisson particles
- Derivation of kinetic equations of classical statistical mechanics in the weak-interaction approximation by the nonequilibrium statistical operator method
- The first and second fluid approximation to the linearized Boltzmann equation
- The projection of the Navier-Stokes equations upon the Euler equations
- Random stirring of the real line
- Fluctuating hydrodynamics and Brownian motion
- Asymptotic equivalence of the linear Navier-Stokes and heat equations in one dimension
- The classical mechanics of one-dimensional systems of infinitely many particles. I: An existence theorem
- The classical mechanics of one-dimensional systems of infinitely many particles. II: Kinetic theory
- A class of interactions in an infinite particle system
- Behavior of Markovian statistical ensembles of finite automata
- Propagation of chaos for the Boltzmann equation
- Ergodic properties of a semi-infinite hard rods system
- Behavior of homogeneous statistical ensembles of finite automata
- Free energy in a Markovian model of a lattice spin system
- On the Boltzmann equation. II: The full initial value problem
- Markov processes with quasilinear first order forward differential equation
- On solution of the nonlinear Boltzmann equation with a cut-off in an unbounded domain
- Dynamical theory of a bidimensional system with an infinite number of degrees of freedom
- A continuum of collision process limit theorems
- An infinite particle system with zero range interactions
- A Characterization of the Invariant Measures for an Infinite Particle System with Interactions
- Random collision processes and their limiting distribution using the discrimination information
- On the Boltzmann equation for rigid spheres
- Asymptotic nonuniqueness of the Navier-Stokes equations in kinetic theory
- An inequality for a functional of probability distributions and its application to Kac's one-dimensional model of a Maxwellian gas
- Ergodic theorems for graph interactions
- A class of nonlinear partial differential equations and the associated Markov processes
- Synchronous and Asynchronous Reversible Markov Systems(1)
- On the existence of global solutions of mixed problem for non-linear Boltzmann equation
- Application of brownian motion to the equation of kolmogorov-petrovskii-piskunov
- Master equations in quantum stochastic processes
- A class of Markov processes with interactions, I
- A class of Markov processes with interactions, II
- Random collision processes with transition probabilities belonging to the same type of distribution
- An inequality for a metric in a random collision process
- Recurrent Random Walk of an Infinite Particle System
- ON INVARIANT MEASURES OF DYNAMICAL SYSTEMS OF ONE-DIMENSIONAL STATISTICAL MECHANICS
- Information Flow in One-Dimensional Markov Systems
- Ergodic Theorems for the Asymmetric Simple Exclusion Process
- On the Broadwell's model for a simple discrete velocity gas
- Statistical Mechanics and Systems of Large Numbers of Elements with Random Interaction
- Time evolution of large classical systems
- A Characterization of the Invariant Measures for an Infinite Particle System with Interactions. II
- Markov semigroups with simplest interaction, I
- Markov semigroups with simplest interaction, II
- Some results on the limiting behaviour of infinite particle systems
- Infinite Particle Systems
- A collision model on the two-dimensional square-lattice
- A unified existence and ergodic theorem for Markov evolution of random fields
- Information flow in some classes of Markov systems
- Convergence of Sequences of Semigroups of Nonlinear Operators with an Application to Gas Kinetics
- Entropy is the only increasing functional of Kac's one-dimensional caricature of a Maxwellian gas
- Diffusion with “collisions” between particles
- Time-Dependent Statistics of the Ising Model
- A CLASS OF MARKOV PROCESSES ASSOCIATED WITH NONLINEAR PARABOLIC EQUATIONS
- An exponential formula for solving Boltzmann's equation for a Maxwellian gas
- Infinite-Product Markov Processes
- Existence, Uniqueness, and Convergence of the Solutions of Models in Kinetic Theory
- An extension of Wild's sum for solving certain non-linear equation of measures
- A class of purely discontinuous Markov processes with interactions, I
- A class of purely discontinuous Markov processes with interactions, II
- The Motion of a Large Particle
- Propagation of chaos for certain Markov processes of jump type with nonlinear generators, I
- Random measures and motions of point processes
- The motion of a heavy particle in an infinite one dimensional gas of hard spheres
- Exact and Chapman-Enskog Solutions of the Boltzmann Equation for the Lorentz Model
- Propagation of chaos for certain Markov processes of jump type with nonlinear generators, II
- A simple model of the derivation of fluid mechanics from the Boltzmann equation
- ON DISCRETE MODELS OF THE KINETIC BOLTZMANN EQUATION
- Linearization for the Boltzmann Equation
- Thermodynamics and Hydrodynamics for a Modeled Fluid
- Existence Theorems for Infinite Particle Systems
- An ergodic theorem for interacting systems with attractive interactions
- Chapman‐enskog‐hilbert expansion for a markovian model of the boltzmann equation
- On the existence of a “wave operator” for the Boltzmann equation
- Markovian Interaction Processes with Finite Range Interactions
- Information flow in discrete Markov systems
- Chapman-Enskog-Hilbert Expansion for the Ornstein-Uhlenbeck Process and the Approximation of Brownian Motion
- Nonlinear parabolic equations and probability
- On the Distribution of the Maximum of a Semi-Markov Process
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Some mathematical problems related to the nonequilibrium statistical mechanics of infinitely many particles