On commutative Grothendieck categories having a Noetherian cogenerator
DOI10.1007/BF01224954zbMath0444.18007OpenAlexW2049261904MaRDI QIDQ1144640
Publication date: 1980
Published in: Archiv der Mathematik (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf01224954
generatorGabriel topologyHopkins-Levitzki theoremadjoint functor theoremcommutative Grothendieck categoriesNoetherian cogenerator
Torsion theories, radicals (18E40) Commutative Noetherian rings and modules (13E05) Projectives and injectives (category-theoretic aspects) (18G05) Torsion theories; radicals on module categories (associative algebraic aspects) (16S90) Commutative Artinian rings and modules, finite-dimensional algebras (13E10) Grothendieck groups, (K)-theory and commutative rings (13D15) Torsion theory for commutative rings (13D30) Torsion modules and ideals in commutative rings (13C12)
Related Items
Cites Work
- Finiteness of the injective hull
- The descending chain condition relative to a torsion theory
- Sommes directes de sous-modules co-irréductibles d'un module
- A generalization of quasi-Frobenius rings
- Homological properties of the ring of differential polynomials
- Some Examples from Infinite Matrix Rings
- Finiteness Conditions for Projective and Injective Modules
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item