Duality in homotopy theory: A retrospective essay
From MaRDI portal
Publication:1146416
DOI10.1016/0022-4049(80)90099-7zbMath0447.55005OpenAlexW2057607827MaRDI QIDQ1146416
Publication date: 1980
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-4049(80)90099-7
suspensionloop spacesco-H-spacesEckmann-Hilton dualityH-spacesdual homotopy theoriesdual proofsdual propositions
(H)-spaces and duals (55P45) Loop spaces (55P35) Definitions and generalizations in theory of categories (18A05) Category of groups (20J15) Suspensions (55P40) Eckmann-Hilton duality (55P30)
Related Items
Atoms in the \(p\)-localization of stable homotopy category, Decomposition spaces and poset-stratified spaces
Cites Work
- Homotopiemengen und ihre induzierten Abbildungen. I.-II.: Sphärenähnliche Mannigfaltigkeiten
- Operators and cooperators in homotopy theory
- Group-like structures in general categories. I. Multiplications and comultiplications
- Homotopy groups of maps and exact sequences
- On excision and principal fibrations
- On the homotopy-commutativity of loop-spaces and suspensions
- On category, in the sense of Lusternik-Schnirelmann
- Unions and intersections in homotopy theory
- Autonomous categories and duality of functors
- Category and generalized Hopf invariants
- Group-like structures in general categories. II: Equalizers, limits, lengths. III: Primitive categories
- On suspensions and comultiplications
- Reduced product spaces
- ON THE HOMOLOGY AND HOMOTOPY DECOMPOSITION OF CONTINUOUS MAPS
- Adjoint Functors
- Groupes d'homotopie et dualité
- Lusternik-Schnirelmann Category and Cocategory
- Structure maps in group theory
- Remark on Loop Spaces
- Groups, Categories and Duality
- Duality for groups
- Natural Isomorphisms in Group Theory
- General Theory of Natural Equivalences
- Note on quasi-Lie rings
- Homotopie und Homologie
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item