Complex interpolation and Fourier multipliers for the spaces \(B^s_{p,q}\) and \(F^s_{p,q}\) of Besov-Hardy-Sobolev type: The case \(0
DOI10.1007/BF01214760zbMath0449.42014MaRDI QIDQ1147321
Publication date: 1981
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/183659
Fourier multipliersHardy spacesBesov spacesmaximal functionsLipschitz spacescomplex interpolationHölder-Zygmund spacesSobolev-Slobodeckij spacescomplex interpolation formulaBessel- potential spaces
Approximation by rational functions (41A20) Interpolation in approximation theory (41A05) Multipliers in one variable harmonic analysis (42A45)
Related Items (8)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Estimates for translation invariant operators in \(L^p\) spaces
- On \(L_p(\ell_q)\)-spaces of entire analytic functions of exponential type: complex interpolation and Fourier multipliers. The case \(0<p<\infty, 0<q<\infty\)
- Maximal inequalities, Fourier multipliers, Littlewood-Paley theorems, and approximations by entire analytic functions in weighted spaces
- Parabolic maximal functions associated with a distribution
- Applications de la théorie des espaces d'interpolation dans l'analyse harmonique
- Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation
- \(H^p\) spaces of several variables
- Intermediate spaces and interpolation, the complex method
This page was built for publication: Complex interpolation and Fourier multipliers for the spaces \(B^s_{p,q}\) and \(F^s_{p,q}\) of Besov-Hardy-Sobolev type: The case \(0<p\leq\infty, 0<q\leq\infty\)