Laguerre transformation as a tool for the numerical solution of integral equations of convolution type
DOI10.1016/0096-3003(79)90021-3zbMath0449.65086OpenAlexW2083759605MaRDI QIDQ1147505
Publication date: 1979
Published in: Applied Mathematics and Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0096-3003(79)90021-3
algorithmsnumerical examplesgenerating functionexponential transformationLaguerre transformnumerical inversion of Laplace transformsconvolution type Volterra integral equationsErlang transformLaguerre coefficients
Numerical methods for integral equations (65R20) Special integral transforms (Legendre, Hilbert, etc.) (44A15) Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Laplace transform (44A10) Convolution, factorization for one variable harmonic analysis (42A85) Volterra integral equations (45D05)
Related Items
Cites Work
- Computational uses of the method of phases in the theory of queues
- A Numerical Algorithm for Recursively-Defined Convolution Integrals Involving Distribution Functions
- On the Renewal Function for the Weibull Distribution
- A Combinatorial Method in the Theory of Queues
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item