Orbits on affine symmetric spaces under the action of the isotropy subgroups
From MaRDI portal
Publication:1148004
DOI10.2969/JMSJ/03220399zbMath0451.53039OpenAlexW2046988348MaRDI QIDQ1148004
Toshihiko Matsuki, Toshio Oshima
Publication date: 1980
Published in: Journal of the Mathematical Society of Japan (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2969/jmsj/03220399
Related Items (24)
Real double coset spaces and their invariants ⋮ Classification of $k$-forms on ${\bf R}^n$ and the existence of associated geometry on manifolds ⋮ Maximality of compression semigroups ⋮ Compression semigroups on open orbits on real flag manifolds ⋮ Fonctions généralisées sphériques sur $G_\mathbb{C}/G_\mathbb{R}$ ⋮ Compression semigroups of open orbits in complex manifolds ⋮ On the exponentiality of affine symmetric spaces ⋮ Double coset decompositions of reductive Lie groups arising from two involutions ⋮ Intégrales orbitales sur les groupes de Lie réductifs ⋮ Eigenspaces of invariant differential operators on an affine symmetric space ⋮ On generalized Cartan subspaces ⋮ Invariant fundamental solutions and solvability for symmetric spaces of type \( G_C / G_ R \) with only one conjugacy class of Cartan subspaces ⋮ Invariant cones in Lie algebras, Lie semigroups, and the holomorphic discrete series ⋮ Unnamed Item ⋮ Coefficients généralisés de séries principales sphériques et distributions sphériques sur \(G_ \mathbb{C} /G_ \mathbb{R}\). (Generalized coefficients of spherical principal series and spherical distributions over \(G_ \mathbb{C} /G_ \mathbb{R}\)) ⋮ Invariant analytic domains in complex semisimple groups ⋮ Lie groups ⋮ Examples of austere orbits of the isotropy representations for semisimple pseudo-Riemannian symmetric spaces ⋮ Equivalence of domains arising from duality of orbits on flag manifolds ⋮ Infinitely differentiable functions invariant on the tangent space of a symmetric space ⋮ Isothermic submanifolds of symmetric R-spaces ⋮ On double coset decompositions of real reductive groups for reductive absolutely spherical subgroups ⋮ Symmetric spaces of Hermitian type ⋮ The Plancherel formula for pseudo-Riemannian symmetric spaces of the universal covering group of SL(2,\({\mathbb{R}})\)
This page was built for publication: Orbits on affine symmetric spaces under the action of the isotropy subgroups