Caractérisation et propriétés des ensembles localement pics de \(A^\infty(D)\)
From MaRDI portal
Publication:1149540
DOI10.1215/S0012-7094-80-04745-6zbMath0454.32013MaRDI QIDQ1149540
Anne-Marie Chollet, Jacques Chaumat
Publication date: 1980
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Holomorphic, polynomial and rational approximation, and interpolation in several complex variables; Runge pairs (32E30) Algebras of holomorphic functions of several complex variables (32A38) Pseudoconvex domains (32T99) Global boundary behavior of holomorphic functions of several complex variables (32E35)
Related Items (16)
Ensembles de zéros et d'interpolation à la frontière de domaines strictement pseudoconvexes. (Zero sets and interpolation on the boundary of strictly pseudoconvex domains) ⋮ On dense ideals in spaces of analytic functions ⋮ Peak curves in weakly pseudoconvex boundaries in \(\mathbb{C}^2\) ⋮ Characterization of global peak sets for \(A^\infty\)(D) ⋮ Division by flat ultradifferentiable functions and sectorial extensions ⋮ Maximum modulus sets in pseudoconvex boundaries ⋮ A characterization of totally real generic submanifolds of strictly pseudoconvex boundaries in \({\mathbb{C}}^ n\) admitting a local foliation by interpolation submanifolds ⋮ Peak sets in pseudoconvex domains with the (NP)-property ⋮ Closed finitely generated ideals in algebras of holomorphic functions and smooth to the boundary in strictly pseudoconvex domains ⋮ Interpolation in weakly pseudoconvex domains in \({\mathbb{C}}^ 2\) ⋮ Peak sets in weakly pseudoconvex domains ⋮ Properties of peak sets in weakly pseudoconvex boundaries in \({\mathbb{C}}^ 2\) ⋮ Unnamed Item ⋮ Peak sets in pseudoconvex domains with isolated degeneracies ⋮ Ensembles pics pour \(A^{\infty}(D)\) non globalement inclus dans une variété integrale ⋮ Interpolation by holomorphic functions smooth to the boundary in the unit ball of \({\mathbb{C}}^ n\)
This page was built for publication: Caractérisation et propriétés des ensembles localement pics de \(A^\infty(D)\)