Sur l'évaluation \(t(M;2,0)\) du polynôme de Tutte d'un matroide et une conjecture de B. Grünbaum rélative aux arrangements de droites du plan
From MaRDI portal
Publication:1150624
DOI10.1016/S0195-6698(80)80031-XzbMath0457.05019WikidataQ122984443 ScholiaQ122984443MaRDI QIDQ1150624
Publication date: 1980
Published in: European Journal of Combinatorics (Search for Journal in Brave)
Combinatorial aspects of matroids and geometric lattices (05B35) Combinatorial structures in finite projective spaces (51E20)
Related Items
Grünbaum's gap conjecture, On \(k\)-neighborly reorientations of oriented matroids, On the number of regions formed by arrangements of closed geodesics on flat surfaces, Classification of arrangements by the number of their cells, A problem of McMullen on the projective equivalences of polytopes
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the number of regions determined by n lines in the projective plane
- Oriented matroids
- Orientability of matroids
- The Tutte polynomial
- Acyclic orientations of graphs
- Sur Les Orientations Acycliques DES Geometries Orientees DE Rang Trois
- Facing up to arrangements: face-count formulas for partitions of space by hyperplanes
- [https://portal.mardi4nfdi.de/wiki/Publication:5731810 On the foundations of combinatorial theory I. Theory of M�bius Functions]
- Triangles in arrangements of lines