Compact and hypercomplete categories
DOI10.1016/0022-4049(81)90002-5zbMath0457.18003OpenAlexW2002565116MaRDI QIDQ1150681
Walter Tholen, Harvey Wolff, Reinhard Börger, Manfred Bernd Wischnewsky
Publication date: 1981
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-4049(81)90002-5
Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.) (18A40) Limits and colimits (products, sums, directed limits, pushouts, fiber products, equalizers, kernels, ends and coends, etc.) (18A30) Categories admitting limits (complete categories), functors preserving limits, completions (18A35) Factorization systems, substructures, quotient structures, congruences, amalgams (18A32)
Related Items (9)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Adequate subcategories
- Semi-topological functors III: Lifting of monads and adjoint functors
- Adjungierte Dreiecke, Colimites und Kan-Erweiterungen
- Semi-topological functors. I
- Semi-topological functors. II: external characterizations
- On the boundedness of topological categories
- Wann sind alle stetigen Abbildungen in \(Y\) konstant? (When are all continuous mappings in \(Y\) constant?)
- Completions of categories. Seminar lectures given 1966 in Zürich
- Lokal präsentierbare Kategorien. (Locally presentable categories)
- The adjoint functor theorem and the Yoneda embedding
- Categories of continuous functors. I
- Equivalence of Topologically-Algebraic and Semi-Topological Functors
- Initially Structured Categories and Cartesian Closedness
- Adjoints to functors from categories of algebras
- Colimits of algebras revisited
- Topological functors and right adjoints
- A concept of nearness
- Structure of categories
- Categories of Functors and Adjoint Functors
- Small subcategories and completeness
- On the non-existence of free complete Boolean algebras
This page was built for publication: Compact and hypercomplete categories