On complete Kähler domains with \(C^ 1-\)boundary

From MaRDI portal
Publication:1151490

DOI10.2977/prims/1195186937zbMath0458.32010OpenAlexW2010706377MaRDI QIDQ1151490

Takeo Ohsawa

Publication date: 1980

Published in: Publications of the Research Institute for Mathematical Sciences, Kyoto University (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.2977/prims/1195186937




Related Items

On the extension of \(L^ 2\) holomorphic functions. III: Negligible weightsOn the extension of \(L^{2}\) holomorphic functions VII: hypersurfaces with isolated singularitiesGeometry of Reinhardt domains of finite type in \(\mathbb{C}^2\)On fixed points and determining sets for holomorphic automorphismsMiscellanea on PSH functions and \(L^2\) methods on pseudoconvex domains\(L^2\)-Dolbeault resolution of the lowest Hodge piece of a Hodge moduleOn the extension of L2 holomorphic functions VIII — a remark on a theorem of Guan and ZhouThin complements of complete Kaehler domainsÜber Gebiete mit vollständiger KählermetrikA Role of the L2 Method in the Study of Analytic FamiliesAnalyticity of complements of complete Kaehler domainsOn the analytic structure of certain infinite dimensional Teicmüller spacesA survey on the \(L^2\) extension theoremsInjectivity theorem for pseudo-effective line bundles and its applicationsOn the Levi-flats in complex tori of dimension twoOn the Lie group structure of automorphism groupsApplication and simplified proof of a sharp L2 extension theoremTopology of Kähler manifolds with weakly pseudoconvex boundaryLine bundle convexity of pseudoconvex domains in complex manifoldsRepresentation theorems of cohomology on weakly 1-complete manifoldsOn the nature of thin complements of complete Kähler metricsVanishing theorems on complete Kähler manifoldsBoundary behavior of the Bergman kernel function on pseudoconvex domainsEstimates for the \({\bar \partial}\)-equation and zeros of holomorphic functions on the Lie-ballThe Bergman kernel on uniformly extendable pseudoconvex domains



Cites Work