On the Euler equations for nonhomogeneous fluids. I
From MaRDI portal
Publication:1152259
zbMath0459.76003MaRDI QIDQ1152259
Alberto Valli, Hugo Beirão da Veiga
Publication date: 1980
Published in: Rendiconti del Seminario Matematico della Università di Padova (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=RSMUP_1980__63__151_0
Related Items (14)
On the motion of non-homogeneous fluids in the presence of diffusion ⋮ On the reactive and non-diffusive equations for zero mach number flow ⋮ The Rayleigh-Taylor instability of incompressible Euler equations in a horizontal slab domain ⋮ Boundary layer for 3D plane parallel channel flows of nonhomogeneous incompressible Navier-Stokes equations ⋮ About the motion of nonhomogeneous ideal incompressible fluids ⋮ Analysis of an inviscid zero-Mach number system in endpoint Besov spaces for finite-energy initial data ⋮ A blow-up criterion for the inhomogeneous incompressible Euler equations ⋮ On the well-posedness of the incompressible density-dependent Euler equations in the \(L^p\) framework ⋮ The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces ⋮ Energy conservation in 2-D density-dependent Euler equations with regularity assumptions on the vorticity ⋮ A new approach to the Rayleigh-Taylor instability ⋮ Existence theorems for compressible viscous fluids having zero shear viscosity ⋮ On the equations of ideal incompressible magneto-hydrodynamics ⋮ The research of Alberto Valli
Cites Work
- Sul problema misto per le equazioni lineari ellittiche
- On the motion of a non-homogeneous ideal incompressible fluid in an external force field
- On the Euler equations for nonhomogeneous fluids. II
- Notes on vortex flows of perfect fluids
- On the Euler equations of incompressible perfect fluids
- Un théorème sur l'existence du mouvement plan d'un fluide parfait, homogene, incompressible, pendant un temps infiniment long
- On classical solutions of the two-dimensional non-stationary Euler equation
- Existence of cω solution of the euler equation for non-homogeneous fluids
- Elliptic Partial Differential Equations of Second Order
- Inequalities for the Green Function and Boundary Continuity of the Gradient of Solutions of Elliptic Differential Equations.
- Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: On the Euler equations for nonhomogeneous fluids. I