Fully bounded Grothendieck categories. Part I: Locally noetherian categories
DOI10.1016/0022-4049(81)90077-3zbMath0469.18005OpenAlexW2009638062MaRDI QIDQ1156867
Publication date: 1981
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-4049(81)90077-3
Gabriel-Popescu representationleft noetherian fully left bounded ringslocally noetherian Grothendieck categoriessymmetric kernel functors
Generalizations of commutativity (associative rings and algebras) (16U80) Localization and associative Noetherian rings (16P50) Localization of categories, calculus of fractions (18E35) Categorical embedding theorems (18E20)
Related Items (6)
Cites Work
- Graded and filtered rings and modules
- Injective modules over Noetherian rings
- Non-commutative principal ideal rings
- Prime spectra in non-commutative algebra
- Goldman's primary decomposition and the tertiary decomposition
- On fully left bounded left Noetherian rings
- Sur quelques points d'algèbre homologique
- Localization of fully left bounded rings
- Localization and the gabriel-popescu embedding
- Des catégories abéliennes
- Localization of Right Noetherian Rings at Semiprime Ideals
- Rings and modules of quotients
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Fully bounded Grothendieck categories. Part I: Locally noetherian categories