Generalized exponential operators in the continuation of the confluent hypergeometric functions
DOI10.1016/0021-9991(81)90042-5zbMath0474.65012OpenAlexW2062028045MaRDI QIDQ1158921
Publication date: 1981
Published in: Journal of Computational Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-9991(81)90042-5
Bessel functionsconfluent hypergeometric functionsMiller formulageneralized exponential operatorssuccessive continuation procedures
Computation of special functions and constants, construction of tables (65D20) Bessel and Airy functions, cylinder functions, ({}_0F_1) (33C10) Classical hypergeometric functions, ({}_2F_1) (33C05)
Related Items (1)
Cites Work
- A Miller algorithm for an incomplete Bessel function
- Numerical evaluation of oscillatory integrals such as the modified Bessel function \(K_{i\zeta}(x)\)
- On the numerical evaluation of the modified Bessel function of the third kind
- The determination of incomplete gamma functions through analytic integration
- New Backward Recurrences for Bessel Functions
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Generalized exponential operators in the continuation of the confluent hypergeometric functions