\(L\)-functions at \(s=1\). IV: First derivatives at \(s=0\)

From MaRDI portal
Publication:1159715

DOI10.1016/0001-8708(80)90049-3zbMath0475.12018OpenAlexW1983440497MaRDI QIDQ1159715

H. M. Stark

Publication date: 1980

Published in: Advances in Mathematics (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/0001-8708(80)90049-3




Related Items (68)

Elliptic units and genus theory\(p\)-adic Abelian Stark conjectures at \(s=1\)SIC-POVMs from Stark units: Prime dimensions n2 + 3Relative norms of Gauss sumsNormal basis and Greenberg's conjectureProblèmes de construction en multiplication complexeClass numbers of ray class fields of imaginary quadratic fieldsAlgebraic number fieldsStark's conjecture and Abelian \(L\)-functions with higher order zeros at \(s=0\)Congruences between derivatives of abelian \(L\)-functions at \(s =0\)Stark's conjecture over complex cubic number fieldsCounting points on \(\text{CM}\) elliptic curvesFourier series and the special values of \(L\)-functionsA Stark conjecture ``over \({\mathbb{Z}}\) for abelian \(L\)-functions with multiple zerosUnnamed ItemOn Shintani's ray class invariant for totally real number fieldsOn the group of modular units and the ideal class groupExplicit elliptic units. I\(p\)-adic interpolation of square roots of central values of Hecke \(L\)-functionsContinued fractions, special values of the double sine function, and Stark units over real quadratic fieldsUnnamed ItemConstruction of ray class fields by elliptic unitsThe equivariant Tamagawa number conjecture and the extended abelian Stark conjectureThe special value 𝑢=1 of Artin-Ihara 𝐿-functionsA Kronecker limit formula for indefinite zeta functionsUnnamed ItemComputing Stark units for totally real cubic fieldsOn a generalization of the rank one Rubin-Stark conjectureTheta function identitiesOn derivatives of Artin \(L\)-seriesStark's conjecture in multi-quadratic extensions, revisited.Non-cyclic class groups and the Brumer-Stark conjectureThe Brauer-Manin-Scharaschkin obstruction for subvarieties of a semi-abelian variety and its dynamical analogFunctorial Properties of Stark Units in Multiquadratic ExtensionsOn the ratios of Barnes' multiple gamma functions to the \(p\)-adic analoguesGaloismodulstruktur und elliptische Funktionen. (Galois module structure and elliptic functions)A $p$-adic Stark conjecture in the rank one settingOn the square root of special values of certain \(L\)-seriesStark's Conjectures and Hilbert's Twelfth ProblemNumerical Verification of the Stark-Chinburg Conjecture for Some Icosahedral RepresentationsTHE EQUIVALENCE OF RUBIN'S CONJECTURE AND THE ETNC/LRNC FOR CERTAIN BIQUADRATIC EXTENSIONSUnnamed ItemA formula for the central value of certain Hecke \(L\)-functionsSign functions of imaginary quadratic fields and applications.Extensions of zeta functions -- examples and a study of the double sine functionsNumerical evidence for higher order Stark-type conjecturesRemark on elliptic units in a $\mathbb {Z}_p$-extension of an imaginary quadratic fieldA two-variable generalization of the Kummer-Malmstén formula for the logarithm of the double gamma and double sine functionsComputing the Hilbert class field of real quadratic fieldsOn Stark elements of arbitrary weight and their \(p\)-adic familiesOn higher order Stickelberger-type theoremsGeneralized Stark formulae over function fieldsA refinement of Stark's conjecture over complex cubic number fieldsTHE FRACTIONAL GALOIS IDEAL FOR ARBITRARY ORDER OF VANISHINGElliptic units, indices and \(\mathbb Z_p\)-extensionsNoncyclotomic Zp-Extensions of Imaginary Quadratic FieldsSpecial values of Abelian \(L\)-functions at \(s=0\)An extension of the first-order Stark conjectureAn enhancement of Zagier’s polylogarithm conjectureTwo cases of Stark's conjectureVerifying a \(p\)-adic abelian Stark conjecture at \(s=1\).A result on the Siegel-Ramachandra class invariant over imaginary quadratic fieldsOn the Brumer-Stark conjectureOn the Stark-Shintani conjecture and cyclotomic \({\mathbb{Z}}_ p\)-extensions of class fields over real quadratic fields. IIConcernant la relation de distribution satisfaite par la fonction \(\phi\) associée à un réseau complexe. (On the distribution relation satisfied by the function \(\phi\) associated to a complex lattice)Lower powers of elliptic unitsArithmetic on elliptic curves with complex multiplication. IIOn the units generated by Weierstrass forms



Cites Work


This page was built for publication: \(L\)-functions at \(s=1\). IV: First derivatives at \(s=0\)