Regularized, continuum Yang-Mills process and Feynman-Kac functional integral

From MaRDI portal
Publication:1160469

DOI10.1007/BF01213595zbMath0476.58008WikidataQ62561049 ScholiaQ62561049MaRDI QIDQ1160469

Pronob K. Mitter, Manuel Asorey

Publication date: 1981

Published in: Communications in Mathematical Physics (Search for Journal in Brave)




Related Items

Geometrical properties of gauge theories, Quantizing Yang-Mills theory: from Parisi-Wu stochastic quantization to a global path integral, A unified geometric framework for boundary charges and dressings: non-abelian theory and matter, On the bundle of connections and the gauge orbit manifold in Yang-Mills theory, Phase transitions and theta vacuum energy, Une construction de la quantification euclidienne du champ de Yang-Mills régularisé, The Riemannian geometry of the configuration space of gauge theories, On the configuration space of gauge theories., A family of metrics on the moduli space of BPST-instantons, Topological phases of quantum theories. Chern-Simons theory, A family of metrics on the moduli space of \(\mathbb{C} P^ 2\) instantons, Global path integral quantization of Yang-Mills theory, Extremal curves in \((2+1)\)-dimensional Yang-Mills theory., On the geometrical representation of the path integral reduction Jacobian: the case of dependent variables in a description of reduced motion, A Poincaré lemma for connection forms, Elliptic genera and quantum field theory, Equivalence of helicity and Euclidean self-duality for gauge fields, Maximal non-abelian gauges and topology of gauge orbit space, Abelian gauge theories on compact manifolds and the Gribov ambiguity, Regularity of gauge equivalence in quantum mechanics and the Aharonov- Bohm effect, Vacuum Structure of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>CP</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="italic">N</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>Sigma Models at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">θ</mml:mi><mml:mi mathvariant="italic" /><mml:mspace /><mml:mo>=</mml:mo><mml:mspace /><mml:mi mathvariant="italic">π</mml:mi></mml:…, Brownian motion in infinite dimensional manifolds



Cites Work