Seminormal graded rings. II
From MaRDI portal
Publication:1161802
DOI10.1016/0022-4049(82)90097-4zbMath0481.13006OpenAlexW1988119617MaRDI QIDQ1161802
Publication date: 1982
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-4049(82)90097-4
Integral domains (13G05) Graded rings and modules (associative rings and algebras) (16W50) Picard groups (14C22) Grothendieck groups, (K)-theory and commutative rings (13D15)
Related Items (3)
The Picard group of a monoid domain ⋮ Divisorial ideals and invertible ideals in a graded integral domain ⋮ Note on the divisoriality of domains of the form $k[[X^{p}, X^{q}]$, $k[X^{p}, X^{q}]$, $k[[X^{p}, X^{q}, X^{r}]]$, and $k[X^{p}, X^{q}, X^{r}]$]
Cites Work
- On \(\text{Pic}(R[X)\) for \(R\) seminormal]
- Pic\((R)\) and the \(R\)-flatness of \(R[X/I\)]
- Seminormality and projective modules over polynomial rings
- Seminormal graded rings
- Seminormality
- Zwei Bemerkungen über seminormale Ringe
- Projective modules over subrings of \(k[x,y\) generated by monomials]
- Grothendieck groups and Picard groups of abelian group rings
- Anneaux de Rees intégralement clos.
- Graded krull domains
- On seminormality
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Seminormal graded rings. II