Regular \(C^ 1-\)parametrizations for exponential sums and splines
From MaRDI portal
Publication:1164806
DOI10.1016/0021-9045(82)90102-2zbMath0486.41017OpenAlexW2051531012MaRDI QIDQ1164806
Publication date: 1982
Published in: Journal of Approximation Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-9045(82)90102-2
Best approximation, Chebyshev systems (41A50) Differentiable manifolds, foundations (58A05) Spline approximation (41A15) Approximation by other special function classes (41A30)
Related Items (2)
A unified approach to differential characterizations of local best approximations for exponential sums and splines ⋮ A review of the parameter estimation problem of fitting positive exponential sums to empirical data
Cites Work
- Chebyshev approximation by \(\gamma\)-polynomials. III. On the number of best approximations
- A unified approach to differential characterizations of local best approximations for exponential sums and splines
- Über differenzierbare asymptotisch konvexe Funktionenfamilien bei der nichtlinearen gleichmäßigen Approximation
- Approximation from a curve of functions
- Über die Vorzeichenstruktur der Exponentialsummen
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Regular \(C^ 1-\)parametrizations for exponential sums and splines