Étude spectrale d'opérateurs hypoelliptiques à caractéristiques multiples. I
From MaRDI portal
Publication:1166031
DOI10.5802/aif.880zbMath0488.35079OpenAlexW3020887152MaRDI QIDQ1166031
Publication date: 1983
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1982__32_3_39_0
Pseudodifferential operators as generalizations of partial differential operators (35S05) Asymptotic distributions of eigenvalues in context of PDEs (35P20)
Related Items (3)
Réduction microlocale des systèmes d'opérateurs pseudo- différentiels. (Microlocal reduction of systems of pseudodifferential operators) ⋮ Complex powers of vector valued operators and their application to asymptotic behavior of eigenvalues ⋮ Spectral analysis and geometry of a sub-Riemannian structure on \(S^3\) and \(S^7\)
Cites Work
- On the eigenvalues of a class of hypoelliptic operators. IV
- The eigenvalues of hypoelliptic operators. III: The non-semibounded case
- Invariants associés à une classe d'opérateurs pseudodifférentiels et applications à l'hypoellipticité
- On the eigenvalues of a class of hypoelliptic operators
- On a class of pseudodifferential operators with double characteristics
- Fourier integral operators. I
- On the proof of the discreteness of the spectrum of one class of differential operators in \(R^ n\)
- Hypoelliptic operators with double characteristics and related pseudo-differential operators
- The weyl calculus of pseudo-differential operators
- Proprietes spectrales d'operators pseduo-differentiels
- Parametrices for pseudodifferential operators with multiple characteristics
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Étude spectrale d'opérateurs hypoelliptiques à caractéristiques multiples. I