Witt rings and Brauer groups under multiquadratic extensions. II
DOI10.1016/0021-8693(82)90102-8zbMath0492.10015OpenAlexW2087009135MaRDI QIDQ1167755
Daniel B. Shapiro, Adrian R. Wadsworth, Jean-Pierre E. Tignol
Publication date: 1982
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-8693(82)90102-8
complexeshomology groupsmultiquadratic extensionquaternion homomorphismWitt ring of anisotropic quadratic forms
Quadratic forms over general fields (11E04) Fields related with sums of squares (formally real fields, Pythagorean fields, etc.) (12D15) Brauer groups of schemes (14F22) General binary quadratic forms (11E16)
Related Items (11)
Cites Work
- Pythagorean fields and the Kaplansky radical
- On the structure of Pythagorean fields
- Succinct and representational Witt rings
- Classification theorems for quadratic forms over fields
- Quadratic forms under algebraic extensions
- Cohomologische Invarianten quadratischer Formen
- On multiples of round and Pfister forms
- Function fields of Pfister forms
- Pfister ideals in Witt rings
- On some Hasse principles over formally real fields
- Algebraic \(K\)-theory and quadratic forms. With an appendix by J. Tate
- Pfister forms and \(K\)-theory of fields
- Spaces of Orderings IV
- Corps a Involution Neutralises par une Extension Abelienne Elementaire
- Witt Rings and Brauer Groups Under Multiquadratic Extensions, I
- Piecewise equivalence of quadratic forms
- Structure of Witt Rings and Quotients of Abelian Group Rings
- Division algebras of degree 4 and 8 with involution
- Quadratic forms over arbitrary fields
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Witt rings and Brauer groups under multiquadratic extensions. II