On the Brauer group of a projective variety
From MaRDI portal
Publication:1168373
DOI10.1007/BF02765009zbMath0493.13001OpenAlexW2067979712WikidataQ116689395 ScholiaQ116689395MaRDI QIDQ1168373
Alain Verschoren, Freddy M. J. van Oystaeyen
Publication date: 1982
Published in: Israel Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02765009
Brauer groups of schemes (14F22) Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.) (16H05) von Neumann regular rings and generalizations (associative algebraic aspects) (16E50) Schemes and morphisms (14A15) Torsion theory for commutative rings (13D30)
Related Items
On the Brauer group of a projective variety, On the Brauer group of a projective curve, Unnamed Item, Local cohomology of graded rings and projective schemes, The closed socle of a relative Azumaya algebra, On Brauer groups of graded Krull domains and positively graded rings
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Graded and filtered rings and modules
- Faisceaux algébriques cohérents
- Ring Theory, Antwerp 1980. Proceedings, University of Antwerp U.I.A., Antwerp, Belgium, May 6-9, 1980
- On the Brauer group of a projective variety
- Prime spectra in non-commutative algebra
- Generalized Rees rings and arithmetical graded rings
- Théorie de la descente et algèbres d'Azumaya
- The Brauer group of a ringed space
- On Azumaya algebras and finite dimensional representations of rings
- The torsion theory at a prime ideal of a right Noetherian ring
- Sur quelques points d'algèbre homologique
- The Brauer Group of a Commutative Ring
- Primes in algebras and the arithmetic in central simple algebras
- Graded p.i. Rings and nonccmmutative projective schemes
- On brauer groups of arithmetical graded rings
- On graded rings and modules of quotients
- Autour de la platitude
- Simple Algebras and Cohomology Groups of Arbitrary Fields
- Maximal Orders
- On Maximally Central Algebras
- On the Picard group of a Grothendieck category
- Rings and modules of quotients