Congruences modulo 8 for the class numbers of \(Q(\sqrt{\pm p})\), p=3 (mod 4) a prime
From MaRDI portal
Publication:1169002
DOI10.1016/0022-314X(82)90024-5zbMath0494.12003MaRDI QIDQ1169002
Publication date: 1982
Published in: Journal of Number Theory (Search for Journal in Brave)
Related Items (2)
Congruences dyadiques entre nombres de classes de corps quadratiques. (Dyadic congruences between class numbers of quadratic fields) ⋮ Proof of a conjecture of Guy on class numbers
Cites Work
- The class number of \(\mathbb Q(\sqrt{-p})\) modulo 4, for \(p\equiv 3\) (mod 4) a prime
- The class number of \(Q(\sqrt p)\) modulo 4, for \(p\equiv 5(\mod 8)\) a prime
- The power of 2 dividing the class-number of a binary quadratic discriminant
- Congruences modulo 16 for the class numbers of the quadratic fields Q(ñp) and Q(ñ2p) for p a prime congruent to 5 modulo 8
- Class Numbers of Real Quadratic Number Fields
- Unnamed Item
- Unnamed Item
This page was built for publication: Congruences modulo 8 for the class numbers of \(Q(\sqrt{\pm p})\), p=3 (mod 4) a prime