On a Fermat equation arising in the arithmetic theory of functions fields
From MaRDI portal
Publication:1169005
DOI10.1007/BF01455448zbMath0494.12008MaRDI QIDQ1169005
Publication date: 1982
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/182880
Fermat's last theoremcyclotomic fieldsBernoulli polynomialsStickelberger elementsKummer criterionDrinfeld-moduleFermat- equationstructure of group of units
Arithmetic theory of algebraic function fields (11R58) Higher degree equations; Fermat's equation (11D41) Formal groups, (p)-divisible groups (14L05) Cyclotomy (11T22)
Related Items (4)
Diophantine problems over \(t\)-modules ⋮ A note on Carlitz Wieferich primes ⋮ On zeros of characteristic \(p\) zeta function ⋮ Class-groups of function fields
Cites Work
- The arithmetic of function fields. II: The 'cyclotomic' theory
- The class number of cyclotomic function fields
- Analytic class number formulas in function fields
- Von Staudt for \(\mathbb F_q[T\)]
- Modular forms for Fr [T.]
- The algebraist’s upper half-plane
- Explicit Class Field Theory for Rational Function Fields
- ELLIPTIC MODULES
- ELLIPTIC MODULES. II
This page was built for publication: On a Fermat equation arising in the arithmetic theory of functions fields