Polynomials with \(D_ p \)as Galois group
From MaRDI portal
Publication:1170288
DOI10.1016/0022-314X(82)90038-5zbMath0496.12004MaRDI QIDQ1170288
Noriko Yui, Christian U. Jensen
Publication date: 1982
Published in: Journal of Number Theory (Search for Journal in Brave)
Finite automorphism groups of algebraic, geometric, or combinatorial structures (20B25) Galois theory (11R32) Separable extensions, Galois theory (12F10) Polynomials in general fields (irreducibility, etc.) (12E05) Representations of groups as automorphism groups of algebraic systems (20F29) Polynomials (irreducibility, etc.) (11R09)
Related Items (12)
Polynomials with Frobenius groups of prime degree as Galois groups. II ⋮ Cyclic Galois extensions for quintic equation ⋮ Polynômes à groupe de Galois diédral ⋮ On a conjecture of Chen and Yui: Fricke groups ⋮ On quaternion algebras over some extensions of quadratic number fields ⋮ The class number one problem for some non-abelian normal CM-fields ⋮ On quaternion algebras over the composite of quadratic number fields ⋮ Polynomials with frobenius galois groups ⋮ On the equivariant Tamagawa number conjecture for Tate motives and unconditional annihilation results ⋮ Galois extensions ramified only at one prime ⋮ Odd degree polynomials with dihedral Galois groups ⋮ Galois groups of polynomials
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Konstruktion von Zahlkörpern mit der Galoisgruppe \(M_{11}\) über \(\mathbb{Q}(\sqrt{-11})\)
- Polynomials with PSL(2,7) as Galois group
- On the construction of Galois extensions of function fields and number fields
- A parametric family of quintic polynomials with Galois group \(D_ 5\).
- Invariant rational functions and a problem of Steenrod
- Polynomials with galois group psl(2,7)
- Über den Klassenkörper zum quadratischen Zahlkörper mit der Diskriminante - 47
- Remark on a Characterization of Certain Ring Class Fields by Their Absolute Galois Group
This page was built for publication: Polynomials with \(D_ p \)as Galois group