Factorization results related to shifts in an indefinite metric
DOI10.1007/BF01694058zbMath0499.47013MaRDI QIDQ1171740
Joseph A. Ball, J. William Helton
Publication date: 1982
Published in: Integral Equations and Operator Theory (Search for Journal in Brave)
indefinite inner productToeplitz operatorBeurling-Lax type representation for a simply invariant subspace for a shift operatorbounded measurable selfadjoint valued matrix functions on the unit circleDarlington embedding theoremindefinite metric analogues of inner-outer factorizationouter square-integrable matrix functionwinding matrix function
Toeplitz operators, Hankel operators, Wiener-Hopf operators (47B35) Factorization theory (including Wiener-Hopf and spectral factorizations) of linear operators (47A68) Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.) (47B37) Spaces with indefinite inner product (Kre?n spaces, Pontryagin spaces, etc.) (46C20) Linear operators on spaces with an indefinite metric (47B50)
Related Items
Cites Work
- Translation invariant spaces
- Factorization of matrix functions and singular integral operators
- Shifts of indefinite inner product spaces
- Vectorial Toeplitz operators and the Fejer-Riesz theorem
- On two problems concerning linear transformations in Hilbert space
- The multiplicative structure of 𝐽-contractive matrix functions
- Shifts on Hilbert spaces.
- Factorization of selfadjoint matrix polynomials with constant signature
- The factorization problem for nonnegative operator valued functions
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item