Approximating convolution products better than the DFT while keeping the FFT
DOI10.1016/0021-9991(81)90251-5zbMath0501.65065OpenAlexW2064122897MaRDI QIDQ1172378
Publication date: 1981
Published in: Journal of Computational Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-9991(81)90251-5
convolution productsfast Fourier transformdiscrete Fourier transformquadrature formulasconvolution integralslattice point transformmultidimensional Fourier transform
Trigonometric interpolation (42A15) Multidimensional problems (41A63) Approximate quadratures (41A55) Numerical quadrature and cubature formulas (65D32) Numerical methods for trigonometric approximation and interpolation (65T40)
Cites Work
- Good lattice points modulo composite numbers
- Pseudo-random numbers and optimal coefficients
- Existence of good lattice points in the sense of Hlawka
- Good lattic points, discrepancy, and numerical integration
- A quasi-Monte Carlo method for computing double and other multiple integrals
- The k-space formulation of the scattering problem in the time domain
- L'ERREUR DANS LE CALCUL DES INTÉGRALES DOUBLES PAR LA METHODE DES BONS TREILLIS
- On Cartesian Products of Good Lattices
- Quasi-Monte Carlo methods and pseudo-random numbers
- Some applications of multidimensional integration by parts
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Approximating convolution products better than the DFT while keeping the FFT