On the uniqueness of solution to the Cauchy problem for elliptic equations in two variables
DOI10.2977/PRIMS/1195169839zbMath0781.35012OpenAlexW2084357169MaRDI QIDQ1176252
Publication date: 25 June 1992
Published in: Publications of the Research Institute for Mathematical Sciences, Kyoto University (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2977/prims/1195169839
uniquenessCauchy problemprincipal symbolsmooth coefficientstriple characteristicslinear elliptic operatorfactorization of the symbol
Pseudodifferential operators as generalizations of partial differential operators (35S05) Boundary value problems for higher-order elliptic equations (35J40) Geometric theory, characteristics, transformations in context of PDEs (35A30)
Related Items (1)
Cites Work
- Unnamed Item
- Uniqueness for the linear Cauchy problems of first order
- The analysis of linear partial differential operators. III: Pseudo-differential operators
- Uniqueness and nonuniqueness in the Cauchy problem for a class of operators of degenerate type
- Uniqueness and non-uniqueness in the Cauchy problem
- Uniqueness in the Cauchy problem for a class of partial differential operators degenerate on the initial surface
- Sur l'unicité du prolongement des solutions des équations elliptiques dégénérées
- Sur l'unicité dans le problème de Cauchy pour les opérateurs différentiels à caractéristiques de multiplicité constante
- Uniqueness in the Cauchy problem for partial differential equations with multiple characteristic roots
- Uniqueness in the Cauchy Problem for Partial Differential Equations
- Unicite du probleme de cauchy pour des operateurs elliptiques a caracteristiques de hautes multiplicites
- Spatially inhomogeneous pseudodifferential operators, I
- Unicité du problème de Cauchy pour des opérateurs elliptiques
- A smooth linear elliptic differential equation without any solution in a sphere
This page was built for publication: On the uniqueness of solution to the Cauchy problem for elliptic equations in two variables