\(L^ p\) regularity of velocity averages
DOI10.1016/S0294-1449(16)30264-5zbMath0763.35014MaRDI QIDQ1177837
Yves Meyer, Pierre-Louis Lions, Ronald J. Di Perna
Publication date: 26 June 1992
Published in: Annales de l'Institut Henri Poincaré. Analyse Non Linéaire (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIHPC_1991__8_3-4_271_0
Besov spacesspectral decompositiontransport equationsSobolev\(L(\sup p)\)-multipliersinterpolating argumentsLittlewood-Paley type decompositionstime dependent casetime-independent caseVlasov-Maxwell systems
Smoothness and regularity of solutions to PDEs (35B65) Singular and oscillatory integrals (Calderón-Zygmund, etc.) (42B20) Maximal functions, Littlewood-Paley theory (42B25) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Multipliers for harmonic analysis in several variables (42B15) PDEs in connection with quantum mechanics (35Q40) Linear first-order PDEs (35F05) (H^p)-spaces (42B30) Kinetic theory of gases in equilibrium statistical mechanics (82B40)
Related Items (94)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Estimates for translation invariant operators in \(L^p\) spaces
- On the Cauchy problem for Boltzmann equations: Global existence and weak stability
- Regularity of the moments of the solution of a transport equation
- Boundary value problems for transport equations
- Some recent developments in Fourier analysis and 𝐻^{𝑝}-theory on product domains
- Global weak solutions of Vlasov‐Maxwell systems
- The Calderon-Zygmund Decomposition on Product Domains
- Moyennisation et régularité deux-microlocale
- Theorems on Fourier Series and Power Series (II)†
This page was built for publication: \(L^ p\) regularity of velocity averages