Coefficients généralisés de séries principales sphériques et distributions sphériques sur \(G_ \mathbb{C} /G_ \mathbb{R}\). (Generalized coefficients of spherical principal series and spherical distributions over \(G_ \mathbb{C} /G_ \mathbb{R}\))
From MaRDI portal
Publication:1177902
DOI10.1007/BF01232269zbMath0741.43010MaRDI QIDQ1177902
Publication date: 26 June 1992
Published in: Inventiones Mathematicae (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/143915
Lie algebraroot systemspherical distributionspherical principal seriesinvariant distributioneigendistributionsemi-simple complex Lie group\(G\)-invariant differential operators
Operations with distributions and generalized functions (46F10) Harmonic analysis on homogeneous spaces (43A85) Semisimple Lie groups and their representations (22E46) Differential geometry of symmetric spaces (53C35)
Related Items
Spherical functions on ordered symmetric spaces ⋮ Basis of the most continuous series of spherical generalized functions on \(G_C/G_R\) ⋮ Orbital functions on \(G_C/G_R\). Inversion formula of orbital integrals and Plancherel formula ⋮ Distinguished representations and a Fourier summation formula
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Invariant spherical distributions and the Fourier inversion formula on \(GL(n,{\mathbb{C}})/GL(n,{\mathbb{R}})\)
- Fourier and Poisson transformation associated to a semisimple symmetric space
- Distributions spheriques sur les espaces hyperboliques
- Orbits on affine symmetric spaces under the action of the isotropy subgroups
- Intertwining operators for semisimple groups. II
- Harmonic analysis on real reductive groups. I: The theory of the constant term
- Zeta functions on the real general linear group
- Meromorphic property of the functions \(P^ \lambda\)
- On \(C^\infty\)-vectors and intertwining bilinear forms for representations of Lie groups
- The principal series for a reductive symmetric space. I. $H$-fixed distribution vectors
- Fonctions généralisées sphériques sur $G_\mathbb{C}/G_\mathbb{R}$
- Sur les représentations induites des groupes de Lie