A sufficient condition of type \((\Omega{})\) for tame splitting of short exact sequences of Fréchet spaces
From MaRDI portal
Publication:1178739
DOI10.1007/BF02568279zbMath0779.46001MaRDI QIDQ1178739
Publication date: 26 June 1992
Published in: Manuscripta Mathematica (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/155642
splitting theoremtame isomorphismshypoelliptic system of linear partial differential operators with constant coefficientsincreasing sequence of continuous seminormslinear right inverse of a tame linear mapproperty \((\Omega DZ)\)property \((\Omega)\)short exact sequence of Frechet spacestame splitting conditiontamely exacttamely nuclear Frechet space
General theory of partial differential operators (47F05) Locally convex Fréchet spaces and (DF)-spaces (46A04)
Related Items
A tame splitting theorem for exact sequences of Fréchet spaces, Simultaneous smoothing and interpolation with respect to E. Borel's theorem
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Simultaneous smoothing and interpolation with respect to E. Borel's theorem
- The imbedding problem for Riemannian manifolds
- Solution operators for partial differential equations in weighted Gevrey spaces
- Tame spaces and power series spaces
- Characterization of the subspaces of (s) in the tame category
- An inverse function theorem in Frechet-spaces
- Charakterisierung der Unterräume von \((s)\)
- Eine Charakterisierung der Potenzreihenraeume von endlichem Typ und ihre Folgerungen
- Power Series Space Representations of Nuclear Frechet Spaces
- A NEW TECHNIQUE FOR THE CONSTRUCTION OF SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS
- Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau
- The inverse function theorem of Nash and Moser
- Characterization of the Quotient Spaces of (s) in the Tame Category
- Generalized implicit function theorems with applications to some small divisor problems, I