Duality in parabolic set up for questions in Kazhdan-Lusztig theory
From MaRDI portal
Publication:1178866
DOI10.1016/0021-8693(91)90225-WzbMath0751.20035OpenAlexW2025281913MaRDI QIDQ1178866
Publication date: 26 June 1992
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-8693(91)90225-w
Representation theory for linear algebraic groups (20G05) Reflection and Coxeter groups (group-theoretic aspects) (20F55)
Related Items
Unnamed Item, On parabolic Kazhdan-Lusztig \(R\)-polynomials for the symmetric group., \(J\)-chains and multichains, duality of Hecke modules, and formulas for parabolic Kazhdan-Lusztig polynomials, Whittaker categories, properly stratified categories and Fock space categorification for Lie superalgebras, Parabolic Kazhdan-Lusztig \(R\)-polynomials for tight quotients of the symmetric groups., Pircon kernels and up-down symmetry, Twisted incidence algebras and Kazhdan-Lusztig-Stanley functions, Computing individual Kazhdan-Lusztig basis elements., Monoid Hecke algebras, Parabolic Kazhdan-Lusztig \(R\)-polynomials for Hermitian symmetric pairs., A twisted duality for parabolic Kazhdan-Lusztig \(R\)-polynomials, Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln, On the dual canonical and Kazhdan-Lusztig bases and 3412-, 4231-avoiding permutations, Isomorphisms of Hecke modules and parabolic Kazhdan-Lusztig polynomials., Parabolic Kazhdan-Lusztig \(R\)-polynomials for quasi-minuscule quotients, Bar operators for quasiparabolic conjugacy classes in a Coxeter group., \(W\)-graph ideals and duality, Parabolic Kazhdan-Lusztig polynomials for Hermitian symmetric pairs, Parabolic generalization of Kazhdan-Lusztig polynomials and bases, The quantum general linear supergroup, canonical bases and Kazhdan-Lusztig polynomials, On the center of affine Hecke algebras of type \(A\)., Complements of Coxeter group quotients., Balanced semisimple filtrations for tilting modules
Cites Work
- Unnamed Item
- A combinatorial setting for questions in Kazhdan-Lusztig theory
- On some geometric aspects of Bruhat orderings. I: A finer decomposition of Bruhat cells
- The Kazhdan-Lusztig conjecture for generalized Verma modules
- On some geometric aspects of Bruhat orderings. II: The parabolic analogue of Kazhdan-Lusztig polynomials
- Representations of Coxeter groups and Hecke algebras
- An inversion formula for relative kazhdan—lusztig polynomials