On a GL(3) analog of \(|{} \eta{} (z)|\)
DOI10.1016/0022-314X(92)90038-QzbMath0741.11025OpenAlexW2090619606MaRDI QIDQ1183262
Publication date: 28 June 1992
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-314x(92)90038-q
cubic fieldsDedekind zeta functionsKronecker's limit formulaEpstein zeta functionmaximal parabolic Eisenstein series\(GL(3)\) analogueconstant Laurent coefficient
Analytic theory (Epstein zeta functions; relations with automorphic forms and functions) (11E45) Other groups and their modular and automorphic forms (several variables) (11F55) Zeta functions and (L)-functions of number fields (11R42) Dedekind eta function, Dedekind sums (11F20)
Related Items (5)
Cites Work
- Automorphic forms on GL(3,\({\mathbb{R}})\)
- An adelic setting of some functions analogous to \(\log|\eta (z)|)\)
- Determinants of Laplacians and a second limit formula in \(\text{GL}(3)\)
- Bessel Series Expansions of the Epstein Zeta Function and the Functional Equation
- On a Certain Function Analogous to log|η(z)|
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: On a GL(3) analog of \(|{} \eta{} (z)|\)