Numerical computation of 2D Sommerfeld integrals - decomposition of the angular integral
DOI10.1016/0021-9991(92)90138-OzbMath0744.65018OpenAlexW2078611976MaRDI QIDQ1184615
Steven L. Dvorak, Edward F. Kuester
Publication date: 28 June 1992
Published in: Journal of Computational Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-9991(92)90138-o
series expansionspolar representationSommerfeld integralsangular integralincomplete Lipschitz-Hankel integralspiecewise-sinusoidal basis functionsprinted strip dipole antenna
Computation of special functions and constants, construction of tables (65D20) Multidimensional problems (41A63) Electromagnetic theory (general) (78A25) Approximate quadratures (41A55) Numerical quadrature and cubature formulas (65D32) Waves and radiation in optics and electromagnetic theory (78A40)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Numerical computation of incomplete Lipschitz-Hankel integral \(Je_ 0(a,z)\)
- Numerical computation of 2D Sommerfeld integrals -- a novel asymptotic extraction technique
- Uniform Asymptotic Expansions of a Class of Integrals in Terms of Modified Bessel Functions, with Application to Confluent Hypergeometric Functions
- An asymptotic extraction technique for evaluating Sommerfeld-type integrals
- Real axis integration of Sommerfeld integrals with applications to printed circuit antennas
This page was built for publication: Numerical computation of 2D Sommerfeld integrals - decomposition of the angular integral