Conditional symmetry of equations of nonlinear mathematical physics
DOI10.1007/BF01067273zbMath0763.35086OpenAlexW2161404885MaRDI QIDQ1185170
Publication date: 28 June 1992
Published in: Ukrainian Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf01067273
solutionsheat transferreductioninvariance principleDiracMaxwellSchrödingerd'AlembertKorteweg-de VriesBoussinesqlinearization of equationsaccoustics
KdV equations (Korteweg-de Vries equations) (35Q53) NLS equations (nonlinear Schrödinger equations) (35Q55) PDEs in connection with quantum mechanics (35Q40) Invariance and symmetry properties for PDEs on manifolds (58J70)
Related Items (10)
Cites Work
- Symmetry and exact solutions of multidimensional nonlinear wave equations
- Group properties of u//(tt)=[f(u)u//x//x]
- The construction of special solutions to partial differential equations
- Non-classical symmetry reduction: example of the Boussinesq equation
- New similarity reductions of the Boussinesq equation
- On the reduction and some new exact solutions of the nonlinear Dirac and Dirac-Klein-Gordon equations
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Conditional symmetry of equations of nonlinear mathematical physics