\(L_ 1\)-optimal estimates for a regression type function in \(R^ d\)
From MaRDI portal
Publication:1185831
DOI10.1016/0047-259X(92)90023-9zbMath0744.62064MaRDI QIDQ1185831
Publication date: 28 June 1992
Published in: Journal of Multivariate Analysis (Search for Journal in Brave)
rate of convergenceminimum distance estimationKolmogorov's entropynonparametric regressionempirical measuresL1-consistencysup-norm compact spaceL1-optimal estimatesregression type function
Density estimation (62G07) Asymptotic properties of nonparametric inference (62G20) Order statistics; empirical distribution functions (62G30)
Related Items (3)
Rates of convergence of estimates, Kolmogorov's entropy and the dimensionality reduction principle in regression ⋮ Dependence and the dimensionality reduction principle ⋮ Minimum distance regression-type estimates with rates under weak dependence
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A regression type problem
- Rates of convergence of minimum distance estimators and Kolmogorov's entropy
- A lower bound on the error in nonparametric regression type problems
- On the estimation of the derivatives of a function with the derivatives of an estimate
- Optimal rates of convergence for nonparametric estimators
- Optimal global rates of convergence for nonparametric regression
- Convergence of estimates under dimensionality restrictions
- Probability Inequalities for Sums of Bounded Random Variables
This page was built for publication: \(L_ 1\)-optimal estimates for a regression type function in \(R^ d\)