Estimation of the eigenvalues of \(\Sigma{}_ 1\Sigma{}_ 2^{-1}\)
DOI10.1016/0047-259X(92)90053-IzbMath0745.62020OpenAlexW2477554125MaRDI QIDQ1186768
Publication date: 28 June 1992
Published in: Journal of Multivariate Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0047-259x(92)90053-i
eigenvaluesloss functionpower functionrisk reductionunbiased risk estimatorinvariant testeigenvalue estimationestimated eigenvalueshypothesis of the equality of population covariance matricesindependent Wishart matricesmultivariate \(F\)- distributionnormal two- sample problemorthogonally invariant minimax estimator
Point estimation (62F10) Minimax procedures in statistical decision theory (62C20) Foundations and philosophical topics in statistics (62A01) Statistical decision theory (62C99)
Related Items (1)
Cites Work
- An orthogonally invariant minimax estimator of the covariance matrix of a multivariate normal population
- Estimation of parameter matrices and eigenvalues in MANOVA and canonical correlation analysis
- The variational form of certain Bayes estimators
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Estimation of the eigenvalues of \(\Sigma{}_ 1\Sigma{}_ 2^{-1}\)