On bounds for the overall potential of power law materials containing voids with an arbitrary shape

From MaRDI portal
Publication:1186895

DOI10.1016/0093-6413(92)90012-YzbMath0807.73041MaRDI QIDQ1186895

Pierre Suquet

Publication date: 28 June 1992

Published in: Mechanics Research Communications (Search for Journal in Brave)




Related Items

Constitutive models for porous materials with evolving microstructure, Numerical solving of frictionless contact problems in perfectly plastic bodies, Bounds for nonlinear composites via iterated homogenization, A micromechanics-based modification of the Gurson criterion by using Eshelby-like velocity fields, The macroscopic behavior of power-law and ideally plastic materials with elliptical distribution of porosity, A semi-analytical model for the behavior of saturated viscoplastic materials containing two populations of voids of different sizes, On the optimality of the variational linear comparison bounds for porous viscoplastic materials, Plastic potentials for anisotropic porous solids, Nonlinear reduced order homogenization of materials including cohesive interfaces, Overall potentials and extremal surfaces of power law or ideally plastic composites, On the influence of local fluctuations in volume fraction of constituents on the effective properties of nonlinear composites. Application to porous materials, A new model for porous nonlinear viscous solids incorporating void shape effects I: Theory, A new model for porous nonlinear viscous solids incorporating void shape effects II: Numerical validation, Effective properties of porous ideally plastic or viscoplastic materials containing rigid particles, Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. II: Applications, Stationary variational estimates for the effective response and field fluctuations in nonlinear composites